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Practical 3-D Contour/Staircase

Treatment of Metals in FDTD
J. Anderson, M. Okoniewski, Member, IEEE, and S. S. Stuchly, Fellow, IEEE

Abstract-The standard finite-difference time-domain (FDTD)
method incorporates an inaccurate staircase representation of
perfect electric conductors. More accnrate, contour-type update
formulas have been proposed. These approaches suffer from
bookkeeping complexity, difficulties in mesh generation, and
stability problems. Only simplified special cases have been imple-
mented in three dimensions. A new contour-like FDTD algorithm

is presented. Subcell formulas and staircase logic are combined

to produce a three-dimensional (3-D) algorithm that is simple,

robust, and frilly automatic.

I. INTRODUCTION

SUBCELL treatments of curved PEC surfaces in a struc-

tured mesh proposed by various authors have been re-

viewed by Yee [1]. In contour finite-difference time-domain

(CFDTD) [2], [3] and related algorithms [4], nodes near metal

are updated using subcell formulas derived from the integral

form of Faraday’s law. Only simplified special cases have

been implemented in three dimensions, due to problems of

bookkeeping complexity discussed by Taflove [5] and Yee [1].

An automatic three-dimensional (3-D) algorithm was proposed

in [6]. Existing CFDTD algorithms are also late-time unstable,

due to the nearest neighbor approximation used to compute

some E-nodes. A stabilized two-dimensional (2-D) algorithm

was presented in [7].

A contour/staircase finite-difference time-domain (FDTD)

hybrid, which is simple, fully automatic, and stable is pro-

posed. The algorithm is an improved version of [6], which

used a cruder stabilization method. Both the current algorithm

and [6] implement Faraday’s integral law—a concept proposed

by Taflove [5]. However, the algorithm presented here is

automatic, 3-D, and stable. In the FDTD hybrid, the mesh

is first generated using staircase preprocessing as in ordinary

FDTD. Then, in an extended preprocessing stage, nodes using

subcell formulas are flagged and required additional geometri-

cal details are stored in auxiliary arrays. During time stepping,

most nodes are treated as in ordinary FDTD and flagged nodes

are updated using subcell formulas.

II. MESH GENERATION

Let in-PllC(Z, y, z) be a function that detects if the point

(x, y, ,z) is physically within a perfect electric conductor. The

computational domain is analyzed as a collection of Yee-cubes
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Fig. 1. Surface of a perfect electric conductor intersecting a Yee cube.

Metal-free fractions of lines and surfaces are labeled. The filled and open

circles represent E and H nodes, respectively. Edge-type nodes are boxed.

(Fig. 1), and E and H nodes are of either PEC- or space-

type (the default). Staircase mesh generation is carried out by

examining each cube in the computational domain [8]

IF (ln-P13C(Z, V, z) = true at cube center)

THEN flag all associated E and H nodes as PEG-type.

E and H nodes are then reexamined to flag edge-type nodes,

which are updated using special formulas. A node is assigned

edge-type under the following conditions

1)

2)

IF (an E-node is PEC-type) AND (one of the two

neighboring collinear E-nodes is space-type) THEN the

PEC-type node is flagged as edge-type.

IF (an H node is space-type) AND (at least one of

the four neighboring coplanar H-nodes is PEC-type)

THEN the space-type node is flagged as edge-type.

Additional coefficients used in the updates of edge-type

nodes are also calculated and stored, From Fig. 1, it can be

seen that E and ~ nodes are associated with line segments

and cube faces, respectively. The metal-free fractions of these
line segments and faces are stored in the arrays L., Lv, L.,

Sz, Sv, and S=—associated with E., Ev, E., Hz, Hy, and

Hz, respectively. All of the coefficients are easily computed

by e.g., integrating in_PEC over the line or surface of

interest.
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Fig. 2. Geometrical details used in the second-order
proximation.
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111. TIME STEPPING

A., Updates of Edge-Type E Nodes

Late time instability in CFDTD is caused by the updating

of certain E nodes using a nearest neighbor approximation.

In a subset of nearest neighbor approximations where an

auxiliay condition is not satisfied [8], the transfer of in-

formation between nodes at infinite speed violates causality.

Therefore, in the hybrid algorithm, edge-type E nodes are

updated with formulas such as Ezi+o,5, j, k = kEzi+o.s+l, j, ~

where the nodes on the left- and right-hand sides of the

equation are edge- and space-type, respectively. The constant

k is automatically zeroed for edge-type E nodes where the

encircling H nodes are not all of PEG type. (In contour

FDTD, k is always unity.)

Alternately, stable running times can be increased by a

factor of three to four when the following second-order ap-

proximation, incorporating the electrostatic behavior of the

field in the vicinity of metal [8]; is used

Lzi+().j,j, k + cOs2(6’mi+0.5, j, k )(1 + ~zi+0.5, j, k) (~~
k=—

~zi+o.5, j, k + (1 + ~wi+o.5, j, k)

where L~i+o.s, j, k is the metal-free fraction of the line segment
of the edge-type node to be updated and ~Ci+o,5, ~,k is the

angle between the line segment and the normal to the PEC

surface (Fig. 2).

B. Updates oj’ Edge-Type H Nodes

An edge-type H node has one or more adjacent PEC-type

H nodes on the same plane, due to the flagging procedure. A

cluster consisting of the edge node under consideration and a

neighboring I’EC’ node is analyzed, using the integral form

of Faraday’s law as advocated by Taflove [2]. There are four

possible two-cell clusters, each corresponding to a potential
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Fig. 3. Realization of Faraday’s integral law with available FDTD nodes and
contents of auxiliary geometry amays. Only nonzero quantities are shown.

update formula. For example, updating an Hz edge node, with

the cluster extended in the +3 direction (Fig. 3), leads to the

following expression

“n+o.5
zt+0,5, j+0,5, k =

..m_n < 1 At
H;i+;,\, j+05 k – —

S&i+0,5, j+0,5, k + &+l.5,j+0.5, k #

x

—

—

(Lyi+2, j+o.5, kE;i+2,3+o.5, k – ‘Yi j+o.5, kE;i, j+o.5, k

Ax

Lzi+().5, j+l, kE&+0.5,j+l, k – Lzi+o.5, j, kE~i+0.5, j, k

Ay

Lzi+l.5, j+1, kE;i+l.5, j+l, k – Lzi+.~.5,j,kE;i+~.5,j> k

Ay )
(2)

Each E node is weighted by the metal free fraction (L)

of its associated line segment, and the right-hand side is also

weighted by the metal-free fractions (S) of the two Hnode

cells in the cluster. Note that edge H nodes are always

associated with clusters of exactly two cells, as opposed

to other CFDTD formulations. When the edge node has

multiple PEC’-type neighbors, the cluster is formed using

neighbor having the slmallest fraction free of metal. In the

rare circumstance when the extended integration contour of

the cluster does not include at least one leg fully within metal,

the algorithm instead performs a staircase FDTD update. This

occurs mainly when the PEC surface is nearly tangent to the

plane of nodes under consideration.

IV. NUMERICAL RESUt.TS

The contourlstaircase hybrid was implemented by append-

ing four additional subroutines to an existing staircase FDTD

code. The generality and automatic mesh generation of the

staircase FDTD code was preserved. Using a mesh with

Ax = Ay = A.z = 0.05 m, resonant frequencies of rectan-

gular, cylindrical, and spherical cavities of various sizes were

computed using both staircase FDTD and the contourktaircase

hybrid. The accuracy of the methods is compared in Tables
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TABLE I
RESONANT FREQUENCY OF RECTANGULAR CAVITY

Side & [Mhz] % Error % Error
Length Analytical (Staircase) (Hybrid)

[m]

1.00 212.0 -0.09 -0.09

1.02 207.8 +1.92 +0.28

1.04 203.8 +3.93 +0.53

1.06 200.0 -3.70 +0.00

1.08 196.3 -1.88 +0.10

1.10 192.7 -0.05 -0.05

TABLE II
RESONANT FREQUENCY OF CYLINDRICAL CAVtTY

Diameter & [Mhz] % Error % Error

[m] Analytical (Staircase) (Hybrid)

1.00 229.5 +2.57 +0.57

1.02 225.0 + 1.42 +0.13

1.04 220.7 +3.40 +0.68

1.06 216.5 +3.88 +0.51

1.08 212.5 +1.41 +0.38

1.10 208.7 +1.96 +0.53

I–III. The resonant frequencies of several higher order modes

were also computed for all geometries. In all cases, similar

gains in accuracy were observed. The additional CPU time

required by the hybrid algorithm was less than 10%, since only

a fraction of the nodes use the complicated update procedures.

The coefficient k was set using the method yielding indefinite

late time stability and was verified to 10000 time steps with

At at the Courant limit (1000 steps being required for an

accurate result).

V. CONCLUSION

A hybrid contourlstaircase FDTD algorithm was proposed.

The algorithm incorporates existing staircase logic so as to

eliminate the bookkeeping complexity of CFDTD in 3-D.

TABLE III

RESONANT FREQUENCY OF SPHERICAL CAVITY

Diameter & [Mhz] % Error Y. Error

[m] Analytical (Staircase) (Hybrid)

1.00 261.9 +1.18 -0.34

1.02 256.7 +1.68 -0.30

1.04 251.8 +1.51 -0.24

1.06 247.0 +1.98 -0.24

1.08 242.4 +1.73 -0.17

1.10 238.0 +1.09 -0.13

Mesh generation remains fully automatic, and late instability

can be drastically postponed or eliminated by selecting an

appropriate procedure to update the edge-type E nodes. The

algorithm was implemented by appending several subroutines

to an existing staircase FDTD code and was validated by

computing the resonant frequencies of rectangular, cylindrical,

and
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spherical cavities.
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