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Practical 3-D Contour/Staircase
Treatment of Metals in FDTD

J. Anderson, M. Okoniewski, Member, IEEE, and S. S. Stuchly, Fellow, IEEE

Abstract—The standard finite-difference time-domain (FDTD)
method incorporates an inaccurate staircase representation of
perfect electric conductors. More accurate, contour-type update
formulas have been proposed. These approaches suffer from
bookkeeping complexity, difficulties in mesh generation, and
stability problems. Only simplified special cases have been imple-
mented in three dimensions. A new contour-like FDTD algorithm
is presented. Subcell formulas and staircase logic are combined
to produce a three-dimensional (3-D) algorithm that is simple,
robust, and fully automatic. .

1. INTRODUCTION

UBCELL treatments of curved PEC surfaces in a struc-

tured mesh proposed by various authors have been re-
viewed by Yee [1]. In contour finite-difference time-domain
(CFDTD) [2], [3] and related algorithms [4], nodes near metal
are updated using subcell formulas derived from the integral
form of Faraday’s law. Only simplified special cases have
been implemented in three dimensions, due to problems of
bookkeeping complexity discussed by Taflove [5] and Yee [1].
An automatic three-dimensional (3-D) algorithm was proposed
in [6]. Existing CFDTD algorithms are also late-time unstable,
due to the nearest neighbor approximation used to compute
some F-nodes. A stabilized two-dimensional (2-D) algorithm
was presented in [7].

A contour/staircase finite-difference time-domain (FDTD)
hybrid, which is simple, fully automatic, and stable is pro-
posed. The algorithm is an improved version of [6], which
used a cruder stabilization method. Both the current algorithm
and [6] implement Faraday’s integral law—a concept proposed
by Taflove [5]. However, the algorithm presented here is
automatic, 3-D, and stable. In the FDTD hybrid, the mesh
is first generated using staircase preprocessing as in ordinary
FDTD. Then, in an extended preprocessing stage, nodes using
subcell formulas are flagged and required additional geometri-
cal details are stored in auxiliary arrays. During time stepping,
most nodes are treated as in ordinary FDTD and flagged nodes
are updated using subcell formulas.

II. MESH GENERATION

Let In_PEC(z, y, z) be a function that detects if the point
(z, y, z) is physically within a perfect electric conductor. The
computational domain is analyzed as a collection of Yee-cubes
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Fig. 1. Surface of a perfect electric conductor intersecting a Yee cube.
Metal-free fractions of lines and surfaces are labeled. The filled and open
circles represent E' and H nodes, respectively. Edge-type nodes are boxed.

(Fig. 1), and E and H nodes are of either PEC- or space-
type (the default). Staircase mesh generation is carried out by
examining each cube in the computational domain [8]

IF (In_PEC(x, y, z) = true at cube center)
THEN flag all associated F' and H nodes as PEC-type.

F and H nodes are then reexamined to flag edge-type nodes,
which are updated using special formulas. A node is assigned
edge-type under the following conditions

1) IF (an F-node is PEC-type) AND (one of the two
neighboring collinear £-nodes is space-type) THEN the
PEC-type node is flagged as edge-type.

2) IF (an H node is space-type) AND (at least one of
the four neighboring coplanar H-nodes is PEC-type)
THEN the space-type node is flagged as edge-type.

Additional coefficients used in the updates of edge-type
nodes are also calculated and stored. From Fig. 1, it can be
seen that £/ and H nodes are associated with line segments
and cube faces, respectively. The metal-free fractions of these
line segments and faces are stored in the arrays L., L, L.,
Sz, 8y, and S,—associated with E., E,, E., H,, H,, and
H,, respectively. All of the coefficients are easily computed
by e.g., integrating in_PFEC over the line or surface of
interest.
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Fig. 2. Geometrical details used in the second-order nearest neighbor ap-
proximation.

III. TIME STEPPING

A, Updates of Edge-Type E Nodes

Late time instability in CFDTD is caused by the updating
of certain £ nodes using a nearest neighbor approximation.
In a subset of nearest neighbor approximations where an
auxiliary condition is not satisfied [8], the transfer of in-
formation between nodes at infinite speed violates causality.
Therefore, in the hybrid algorithm, edge-type E nodes are
updated with formulas such as E;10.5 ;5 = kEzito.5+1, 5, %
where the nodes on the left- and right-hand sides of the
equation are edge- and space-type, respectively. The constant
k is automatically zeroed for edge-type E nodes where the
encircling H nodes are not all of PEC type. (In contour
FDTD, k is always unity.)

Alternately, stable running times can be increased by a
factor of threc to four when the following second-order ap-
proximation, incorporating the electrostatic behavior of the
field in the vicinity of metal [8], is used

Leivos, j,k + €052 (0zivos, . k) (L + Luivos, i, k)
Lyivos,5,k + (1 + Laitos, i, k)

where Lg;10.5, 5, & is the metal-free fraction of the line segment
of the edge-type node to be updated and 0y iy0.5, 4 % is the
angle between the line segment and the normal to the PEC
surface (Fig. 2).

k=

M

B. Updates of Edge-Type H Nodes

An edge-type I node has one or more adjacent PIC-type
H nodes on the same plane, due to the flagging procedure. A
cluster consisting of the edge node under consideration and a
neighboring PEC node is analyzed, using the integral form
of Faraday’s law as advocated by Taflove [2]. There are four
possible two-cell clusters, each corresponding to a potential
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Fig. 3. Realization of Faraday’s integral law with available FDTD nodes and
contents of auxiliary geometry arrays. Only nonzero quantities are shown.

update formula. For example, updating an H, edge node, with
the cluster extended in the -z direction (Fig. 3), leads to the
following expression
H;Lii%'.%,jw.s,k =
Hn.—O.S ) m 1 ﬁ
eiF0.5, 405,k G 05,405,k + Sait15 405k M

. . mn . Lo X
y (Lyt+2,1+0-57kEgyi+2,j+0.5,k Ly jyo5,kE0 ivos k

Az ;
Lm‘+0.5,j+1, kEgz'-J,-O.B,j—I—l, kT Lm’+0.5, Js kE;Zi-l—O.S,j, k
— Ay
Lm’+1.5,j+1, kE:i+l.5,j+l, B Lwi+-1.5,j7kE;Li+1.5,j, k
- Ay )
2

Each E node is weighted by the metal free fraction (L)
of its associated line segment, and the right-hand side is also
weighted by the metal-free fractions (S) of the two Hnode
cells in the cluster. Note that edge H nodes are always
associated with clusters of exactly two cells, as opposed
to other CFDTD forrnulations. When the edge node has
multiple’ PEC-type neighbors, the cluster is formed using
neighbor having the smallest fraction free of metal. In the
rare circumstance when the extended integration contour of
the cluster does not include at least one leg fully within metal,
the algorithm instead performs a staircase FDTD update. This
occurs mainly when the PEC surface is nearly tangent to the
plane of nodes under consideration.

IV. NUMERICAL RESULTS

The contour/staircase hybrid was implemented by append-
ing four additional subroutines to an existing staircase FDTD
code. The generality and automatic mesh generation of the
staircase FDTD code was preserved. Using a mesh with
Az = Ay = Az = 0.05 m, resonant frequencies of rectan-
gular, cylindrical, and spherical cavities of various sizes were
computed using both staircase FDTD and the contour/staircase
hybrid. The accuracy of the methods is compared in Tables
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TABLE I

RESONANT FREQUENCY OF RECTANGULAR CAVITY
Side fres [IMhz] | % Error % Error
Length Analytical | (Staircase) |(Hybrid)
[m]
1.00 212.0 -0.09 -0.09
1.02 207.8 +1.92 +0.28
1.04 203.8 +3.93 +0.53
1.06 200.0 -3.70 +0.00
1.08 196.3 -1.88 +0.10
1.10 192.7 -0.05 -0.05

TABLE 11

RESONANT FREQUENCY OF CYLINDRICAL CAVITY
Diameter | fies [Mhz] | % Error % Error
[m] Analytical | (Staircase) [(Hybrid)
1.00 229.5 +2.57 +0.57
1.02 225.0 +1.42 +0.13
1.04 220.7 +3.40 +0.68
1.06 216.5 +3.88 +0.51
1.08 212.5 +1.41 +0.38
1.10 208.7 +1.96 +0.53

I-1III. The resonant frequencies of several higher order modes
were also computed for all geometries. In all cases, similar
gains in accuracy were observed. The additional CPU time
required by the hybrid algorithm was less than 10%, since only
a fraction of the nodes use the complicated update procedures.
The coefficient £ was set using the method yielding indefinite
late time stability and was verified to 10000 time steps with
At at the Courant limit (1000 steps being required for an
accurate result).

V. CONCLUSION

A hybrid contour/staircase FDTD algorithm was proposed.
The algorithm incorporates existing staircase logic so as to
eliminate the bookkeeping complexity of CFDTD in 3-D.
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TABLE III
RESONANT FREQUENCY OF SPHERICAL CAVITY
Diameter | fs [Mhz] | % Error % Error
[m] Analytical |(Staircase) |(Hybrid)
1.00 261.9 +1.18 -0.34
1.02 256.7 +1.68 -0.30
1.04 251.8 +1.51 -0.24
1.06 247.0 +1.98 -0.24
1.08 2424 +1.73 -0.17
1.10 238.0 +1.09 -0.13

Mesh generation remains fully automatic, and late instability
can be drastically postponed or eliminated by selecting an
appropriate procedure to update the edge-type IZ nodes. The
algorithm was implemented by appending several subroutines
to an existing staircase FDTD code and was validated by
computing the resonant frequencies of rectangular, cylindrical,

and spherical cavities.
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